

4 - Sets 1

Definition. A **set** is an unordered collection of objects (with no repeats), written in braces, like:

$$\text{Students} = \{\text{Ayo, Ian, Elon}\} \quad \text{Faculty} = \{\text{Man, Elon}\} \quad \text{Staff} = \{\text{Neil, Elon}\}$$

An object x is an **element** or **member** of a set S , written $x \in S$, if x is listed within the outer curly braces of S :

$$\text{Elon} \in \text{Students}, \quad \text{Man} \notin \text{Students}$$

A set S is **subset** of a set T , written $S \subseteq T$, if $x \in S$ satisfies $x \in T$.

Application. Sets model group permissions:

$$\text{Students} \cup \text{Staff} = \{\text{Ayo, Ian, Elon}\} \text{ get gym access}$$

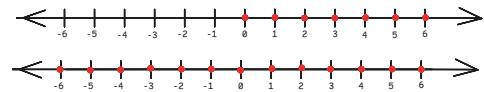
$$\text{Faculty} \cup \text{Staff} = \{\text{Man, Neil, Elon}\} \text{ get weekend building access}$$

$$\text{Students} \cap \text{Faculty} \cap \text{Staff} = \{\text{Elon}\} \text{ lists suspicious users (too much access)}$$

Definition.

The empty set, written as \emptyset or $\{\}$ has no elements. This set is unique.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$$



$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$$

\mathbb{Q} = the set of rational numbers, whose elements are quotients $\frac{n}{m}$ of integers n and m with $m \neq 0$

$$\mathbb{R} = \text{the set of real numbers}$$

$$\text{Know: } \frac{2}{5} = 0.4 \in \mathbb{Q}, \quad \sqrt{2} \notin \mathbb{Q}, \quad \sqrt{2} \in \mathbb{R}, \quad \mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$$

Definition. (Set-roster notation.)

Let U be a set of all possible elements under consideration, called the **universe**. Then

$$\{x \in U : P(x)\}$$

is the set of all elements x of U such that the statement $P(x)$ about x is true. We read the colon as "such that".

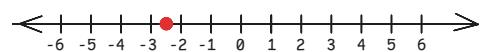
Examples.

$$\textcircled{1} \quad \mathbb{Q} = \left\{ \frac{n}{m} : n, m \in \mathbb{Z} \text{ and } m \neq 0 \right\}$$

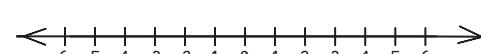
$$\textcircled{2} \quad \begin{aligned} \text{The set of 2-digit square numbers} &= \{n \in \mathbb{N} : \sqrt{n} \in \mathbb{N} \text{ and } 10 \leq n \leq 99\} \\ &= \{16, 25, 49, 64, 81\} \end{aligned}$$

Examples. List all elements of the following sets; graph the sets on the number line.

$$\textcircled{1} \quad \{x \in \mathbb{Q} : 2x + 5 = 0\} = \{-5/2\} \text{ by solving } 2x+5=0.$$



$$\textcircled{2} \quad \{x \in \mathbb{Z} : 2x + 5 = 0\} = \{\} : -5/2 = -2.5 \text{ is not an integer.}$$



③ $\{x \in \mathbb{Q} : x^2 - 2 = 0\} = \{\}$ since $\pm\sqrt{2}$ are not rational numbers.

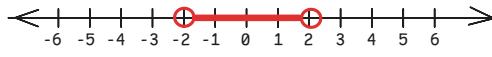
④ $\{x \in \mathbb{Q} : 2x^3 - x^2 - 4x + 2 = 0\}$

Rational Roots Test: For a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ with $a_i \in \mathbb{Z}$ a zero $\frac{p}{q} \in \mathbb{Q}$ of $f(x)$ satisfies $p \mid a_0$ and $q \mid a_n$.

In our case, $p \mid 2$ so $p \in \{\pm 1, \pm 2\}$ and $q \mid 2$ so $q \in \{\pm 1, \pm 2\}$. So $\frac{p}{q} \in \{\pm 1, \pm \frac{1}{2}, \pm 2\}$

Checking by hand, only $x = 1/2$ is a solution to our polynomial.

Examples. Graph the following sets on the number line.

① $\{x \in \mathbb{R} : x^2 < 4\}$ 

② $\{x \in \mathbb{Z} : x^2 < 4\}$

③ $\{x \in \mathbb{N} : x^2 < 4\}$

Definition.

$(a, b) = \{x \in \mathbb{R} : a < x \text{ and } x < b\}$, called the **open interval** from a to b

$[a, b] = \{x \in \mathbb{R} : a \leq x \text{ and } x \leq b\}$, called the **closed interval** from a to b

Definition. Let A and B be subsets of the universe U .

$\sim A = \{x \in U : x \notin A\}$ is the **complement** of A in U .

$A \cup B = \{x \in U : x \in A \text{ or } x \in B\}$ is the **union** of A and B .

$A \cap B = \{x \in U : x \in A \text{ and } x \in B\}$ is the **intersection** of A and B .

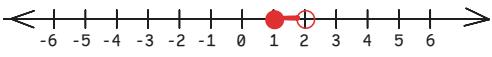
$A - B = \{x \in U : x \in A \text{ and } x \notin B\}$ is the **difference** of A and B .

Examples. Graph the following sets on the number line.

① $(0, 2)$

② $\sim (0, 2)$

① $(0, 2) \cup (4, 5) \cup [1, 3]$

② $(0, 2) \cap [1, 4] \cap (-1, 3)$ 

③ $(\sim (0, 2)) \cap [1, 3]$ 